Flow imaging in vivo using off resonance spin labeling induced by extraneous contrast agent
نویسندگان
چکیده
Background Tissues within the dipolar field of superparamagnetic contrast agents experience a frequency shift that enables positive contrast MRI with acquisition schemes using on-resonant saturation (Figure 1a,b). The administration of iron oxide based agents enables a plethora of applications using positive contrast MRI. They have been widely explored and mainly focused on lymphography, angiography, cancer detection and atherosclerosis. In this preliminary in vivo study, a dynamic contrast mechanism is presented,using externally placed suspensions of iron oxide nanoparticles (SPIONs) to induce noninvasive spin tagging of nearby blood flow.
منابع مشابه
ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملSelf-refocused spatial-spectral pulse for positive contrast imaging of cells labeled with SPIO nanoparticles.
MRI has been used extensively to noninvasively track the location of cells labeled with superparamagnetic iron-oxide nanoparticles (SPIOs) in vivo. Typically, SPIOs are employed as a negative contrast agent which makes it difficult to differentiate labeled cells from extraneous sources of inhomogeneity and actual voids in the image. As a result, several novel approaches have been put forth to o...
متن کاملPotential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times
Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملRenal Perfusion Imaging using Continuous Arterial Spin Labeling with Separate Labeling and Imaging Coils
Introduction: Assessment of renal perfusion rates can provide important information about kidney function, but also about diseases with pathological perfusion changes, e.g. nephrocalcinosis and renal infarction. To minimize potential risks of nephrotoxicity associated with Gd-based MR perfusion techniques, arterial spin labeling (ASL) is currently being adapted to the kidneys [1-3]. ASL, a meth...
متن کامل